航模有几种翼型图片(航模有几种翼型)

阅读:7 来源: 发表时间:2023-01-10 10:21作者:秋天
    接要: 有很多朋友在寻找航模有几种翼型相关的资料,本文为大家罗列出航模有几种翼型图片一些文章介绍,希望可以帮忙到需要的朋友。如果用得上记得收藏。本文目录一览:1、航模飞...

有很多朋友在寻找航模有几种翼型相关的资料,本文为大家罗列出航模有几种翼型图片一些文章介绍,希望可以帮忙到需要的朋友。如果用得上记得收藏。

本文目录一览:

1、航模飞机设计基本知识分析

2、航模的组成

3、谁有小学航模知识啊?小升初要用!急啊!!!

4、航模固定翼飞机机翼与机身比例多少为合适?

航模飞机设计基本知识分析

第一步,整体设计

1、确定翼型

我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。

2、确定机翼的面积

模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。还有,普通固定翼飞机的展弦比应在5-6之间。确定副翼的面积机翼的尺寸确定后,就该算出副翼的面积了。副翼面积应占机翼面积的20%左右,其长度应为机翼的30-80%之间。

3、确定机翼安装角

以飞机拉力轴线为基准, 机翼的翼弦线与拉力轴线的夹角就是机翼安装角。机翼安装角应在正0 -3度之间。机翼设计安装角的目的,是为了为使飞机在低速下有较高的升力。设计时要不要安装角,主要看飞机的翼型和翼载荷。有的翼型有安装角才能产生升力,如双凸对称翼。但是,大部分不用安装角就能产生升力。翼载荷较大的`飞机,为了保证飞机在起飞着陆和慢速度飞行时有较大的升力,需要设计安装角。任何事物都是一分为二的,设计有安装角的飞机,飞行阻力大,会消耗一部分发动机功率。安装角超过6度以上的,更要小心,在慢速爬升和转弯的的情况下,很容易进入失速。

4、确定机翼上反角

机翼的上反角,是为了保证飞机横向的稳定性。有上反角的飞机,当机翼副翼不起作用时还能用方向舵转弯。上反角越大,飞机的横向稳定性就越好,反之就越差。但是,上反角也有它的两面性。飞机横向太稳定了,反而不利于快速横滚,这恰恰又是特技机所不需要的。所以,一般特技机采取0度上反角。

5、确定重心位置

重心的确定非常重要,重心太靠前,飞机就头沉,起飞降落抬头困难。同时,飞行中因需大量的升降舵来配平,也消耗了大量动力。重心太靠后的话,俯仰太灵敏,不易操作,甚至造成俯仰过度。一般飞机的重心在机翼前缘后的25~30%平均气动弦长处。特技机27~40%。在允许范围内,重心适当靠前,飞机比较稳定.

6、确定机身长度

翼展和机身的比例一般是70--80%。

7、确定机头的长度

机头的长度(指机翼前缘到螺旋浆后平面的之间的距离),等于或小于翼展的15%。

8、确定垂直尾翼的面积

垂直尾翼是用来保证飞机的纵向稳定性的。垂直尾翼面积越大,纵向稳定性越好。当然,垂直尾翼面积的大小,还要以飞机的速度而定。速度大的飞机,垂直尾翼面积越大,反之就小。垂直尾翼面积占机翼的10%。在保证垂直尾翼面积的基础上,垂直尾翼的形状,根据自己的喜好可自行设计。

9、确定方向舵的面积

方向舵面积约为垂直尾翼面积的25%。如果是特技机,方向舵面积可增大。

10、确定水平尾翼的翼型和面积

水平尾翼对整架飞机来说,也是一个很重要的问题。我们有必要先搞清常规布局飞机的气动配平原理。形象地讲,飞机在空中的气动平衡就像一个人挑水。肩膀是飞机升力的总焦点,重心就是前面的水桶,水平尾翼就是后面的水桶。升力的总焦点不随飞机迎角的变化而变化,永远固定在一个点上。首先,重心是在升力总焦点的前部,所以它起的作用是起低头力矩。由此可知,水平尾翼和机翼的功能恰恰相反,它是用来产生负升力的,所以它起的作用是抬头力矩,以达到飞机配平的目的。由此可知,水平尾翼只能采用双凸对称翼型和平板翼型,不能采用有升力平凸翼型。水平尾翼的面积应为机翼面积的20-25%。我选定22%,计算后得出水平尾翼的面积为89100平方毫米。同时要注意,水平尾翼的宽度约等于0.7个机翼的弦长。

11、确定升降舵面积

升降舵的面积约为水平尾翼积的20-25%。如果是特技机,升降舵面积可增大。

12、确定水平尾翼的安装位置

从机翼前缘到水平尾翼之间的距离(就是尾力臂的长度),大致等于翼弦长的3倍。此距离短时,操纵时反应灵敏,但是俯仰不精确。此距离长时,操纵反应稍慢,但俯仰较精确。F3A的机身长度大于翼展就是这个理论的实际应用,它的目的主要是为了精确。垂直尾翼、水平尾翼和尾力臂这三个要素合起来,就是“尾容量”。尾容量的大小,是说它对飞机的稳定和姿态变化贡献的大小。这个问题我们用真飞机来说明一下。像米格15和F16高速飞行的飞机,为了保证在高速飞行时的纵向稳定,其垂直尾翼设计得又大又高。像SU27和F18甚至设计成双垂直尾翼。而像运输机和客机,垂直尾翼就小得多。

13、确定起落架

一般飞机的起落架分前三点和后三点两种。前三点起落架,起飞降落时方向容易控制。但着陆粗暴时很容易损坏起落架,转弯速度较快时容易向一边侧翻,导致机翼和螺旋桨受损。后三点虽然在起飞降落时的方向控不如前三点好。但是其它方面较前三点都好。尤其是它能承受粗暴着陆,大大增加了初学者的信心。前起落架的安装位置一定要在飞机的重心前8公分左右,以免滑跑时折跟头。

14、确定发动机

一般讲,滑翔机的功重比为0.5左右。普通飞机的功重比为0.8—1左右。特技机功重比大于1以上。安装发动机时,要有向下和向右安装角,以解决螺旋桨的滑流对飞机模型左偏航和高速飞行时因升力增大引起飞机模型抬头的影响。其方法是以拉力轴线为基准,从后往前看,发动机应有右拉2度,下拉1.5度的安装角。当然,根据飞机的不同,这个角度还要根据飞行中的实际情况作进一步的调整。

就功重比而言,我们的航模飞机与真飞机有着很大的不同。我们航模的功重比都能轻松的达到1,而真飞机的功重比大都在0.3至0.6之间,唯有高性能战斗机才能接近或超过1。这也就是说,我们在飞航模中很多飞行都是在临界失速和不严重的失速的情况下飞行的,如低速度下的急转弯、急上升、吊机等。只是由于发动机的拉力大,把失速这一情况掩盖罢了。所以我们在飞航模时,很少能飞出真飞机那种感觉。这也是我们很多朋友在飞像真机时,很容易出现失速坠机的主要原因。

第二步,绘制三面图

根据上面的设计和计算结果,我们就可以绘制出自己需要的飞机了。绘制三面图的主要目的是为了得到您想要的飞机效果,并确定每个部件的形状和位置。使您在以后的工作中,有一个基本的蓝图。

第三步,绘制结构图

绘制结构图的主要目的是为了确定每个部件的布局和制作步骤。如:哪个部件用什么材料,先做哪个部件后作哪个部件,部件与部件的结合方法等等。如果您胸有成竹,这一步可以省略。

第四步,放样和组装

根据您绘制的图纸,应做一比一的放样图。目的是在组装飞机各部件时,在放样图上粘接各部件。这样能做到直观准确,提高工作质量。网上有很多介绍制作方面的精品文章,大家可以参考,我就不再赘述了。

航模有几种翼型图片(航模有几种翼型)

航模的组成

航模飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架、发动机和控制系统六部分组成。

1、机翼―――是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞行时的横侧稳定。

2、尾翼―――包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰稳定,垂直尾翼保持模型飞机飞行时的方向稳定。水平尾翼上的升降舵能控制模型飞机的升降, 垂直尾翼上的方向舵可控制模型飞机的飞行方向。也有模型飞机使用V型尾翼,需要混合控制,一般航模遥控器都有此功能。两片向外倾斜的尾翼联合控制方向舵与升降舵。最特殊的情况是机翼采用S翼型的无动力滑翔机,这类机只有垂直尾翼而没有水平尾翼。

3、机身―――将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。

4、起落架―――供模型飞机起飞、着陆和停放的装置。机头一个起落架,机翼下方两面各一个起落架叫前三点式, 机头两个起落架,尾部一个起落架叫后三点式。

5、发动机―――它是模型飞机产生飞行动力的装置。模型飞机常用的动 力装置有:橡筋束、活塞式发动机、涡轮喷气式发动机、电动机。较少使用的有:脉冲喷气发动机(重量大,油耗大)、转子发动机(只有OS的一款)空气发动机(上世纪70年代用于室内模型与活塞发动机类似)。

6、太阳能板及各类电池也可作为模型飞机的动力来源。

7、控制系统―――控制系统主要用来控制模型的空中机动,包括起飞降落转向等。分为发射机(及所说的遥控器)和接收机(在飞机上与各电子设备连接)。高级航模可以用于数据回传,例如温度传感,空速表,高度计,升降率计,gps,FPV等等。

谁有小学航模知识啊?小升初要用!急啊!!!

1.什么叫飞机模型 一般认为不能飞行的,以某种飞机的实际尺寸按一定比例制作的模型叫飞 机模型。

2、什么叫模型飞机

一般称能在空中飞行的模型为模型飞机,叫航空模型。

二、开展航空模型活动的作用

航空模型是各种航空器模型的总称。它包括模型飞机和其他模型飞行器。

三、模型飞机的组成

模型飞机一般与载人的飞机一样,主要由机翼、尾翼、机身、起落架和发动机五部分组成。

1、机翼––是模型飞机在飞行时产生升力的装置,并能保持模型飞机飞机飞行时的横侧安定。

2、尾翼––包括水平尾翼和垂直尾翼两部分。水平尾翼可保持模型飞机飞行时的俯仰安定,垂直尾翼保持模型飞机飞行时 的方向安定。水平尾翼上的升降舵能控制模型飞机的升降, 垂直尾翼上的方向舵可控制模型飞机的飞行方向

3、机身––将模型的各部分联结成一个整体的主干部分叫机身。同时机身内可以装载必要的控制机件,设备和燃料等。

4、起落架––供模型飞机起飞、着陆和停放的装置。前部一个起落架 ,后面两面三个起落架叫前三点式;前部两面三个起落架,后面一个起落架叫后三点式。

5、发动机––它是模型飞机产生飞行动力的装置。模型飞机常用的动力装置有:橡筋束、活塞式发动机、喷气式发动机、电动机。

四、航空模型技术常用术语

1、翼展––机翼(尾翼)左右翼尖间的直线距离。(穿过机身部分也计算在内)。

2、机身全长––模型飞机最前端到最末端的直线距离。

3、重心––模型飞机各部分重力的合力作用点称为重心。

4、翼型––机翼或尾翼的横剖面形状。

5、翼弦––前后缘之间的连线。

6、展弦比––翼展与平均翼弦长度的比值。展弦比大说明机翼狭长。

五、关于航模的一些基本问题

1、升力和阻力飞机和模型飞机之所以能飞起来,是因为机翼的升力克服了重力。机翼的升力是机翼上下空气压力差形成的。当模型在空中飞行时,机翼上表面的空气流速加快,压强减小;机翼下表面的空气流速减慢压强加大(伯努利定律)。这是造成机翼上下压力差的原因。 机翼上下流速变化的原因有两个:a、不对称的翼型;b、机翼和相对气流有迎角。翼型是机翼剖面的形状。机翼剖面多为不对称形,如下弧平直上弧向上弯曲(平凸型)和上下弧都向上弯曲(凹凸型)。对称翼型则必须有一定的迎角才产生升力。升力的大小主要取决于四个因素:a、升力与机翼面积成正比;b、升力和飞机速度的平方成正比。同样条件下,飞行速度越快升力越大;c、升力与翼型有关,通常不对称翼型机翼的升力较大;d、升力与迎角有关,小迎角时升力(系数)随迎角直线增长,到一定界限后迎角增大升力反而急速减小,这个分界叫临界迎角。机翼和水平尾翼除产生升力外也产生阻力,其他部件一般只产生阻力。

2、平飞水平匀速直线飞行叫平飞。平飞是最基本的飞行姿态。维持平飞的条件是:升力等于重力,拉力等于阻力。由于升力、阻力都和飞行速度有关,一架原来平飞中的模型如果增大了马力,拉力就会大于阻力使飞行速度加快。飞行速度加快后,升力随之增大,升力大于重力模型将逐渐爬升。为了使模型在较大马力和飞行速度下仍保持平飞,就必须相应减小迎角。反之,为了使模型在较小马力和速度条件下维持平飞,就必须相应的加大迎角。所以操纵(调整)模型到平飞状态,实质上是发动机马力和飞行迎角的正确匹配。

3、爬升前面提到模型平飞时如加大马力就转为爬升的情况。爬升轨迹与水平面形成的夹角叫爬升角。一定马力在一定爬升角条件下可能达到新的力平衡,模型进入稳定爬升状态(速度和爬角都保持不变)。稳定爬升的具体条件是:拉力等于阻力加重力向后的分力(F="X十Gsinθ);升力等于重力的另一分力(Y=GCosθ)。爬升时一部分重力由拉力负担,所以需要较大的拉力,升力的负担反而减少了。 和平飞相似,为了保持一定爬升角条件下的稳定爬升,也需要马力和迎角的恰当匹配。打破了这种匹配将不能保持稳定爬升。例如马力增大将引起速度增大,升力增大,使爬升角增大。如马力太大,将使爬升角不断增大,模型沿弧形轨迹爬升,这就是常见的拉翻现象。

4、滑翔滑翔是没有动力的飞行。滑翔时,模型的阻力由重力的分力平衡,所以滑翔只能沿斜线向下飞行。滑翔轨迹与水平面的夹角叫滑翔角。稳定滑翔(滑翔角、滑翔速度均保持不变)的条件是:阻力等于重力的向前分力(X=GSinθ);升力等于重力的另一分力(Y=GCosθ)。滑翔角是滑翔性能的重要方面。滑翔角越小,在同一高度的滑翔距离越远。滑翔距离(L)与下降高度(h)的比值叫滑翔比(k),滑翔比等于滑翔角的余切滑翔比,等于模型升力与阻力之比(升阻比)。 Ctgθ="1/h=k。 滑翔速度是滑翔性能的另一个重要方面。模型升力系数越大,滑翔速度越小;模型翼载荷越大,滑翔速度越大。

调整某一架模型飞机时,主要用升降调整片和重心前后移动来改变机翼迎角以达到改变滑翔状态的目的。

航空模型航空模型是各种航空器模型的总称。它包括模型飞机和其他模型飞行器。 航空模型活动从一开始就引起人们浓厚的兴趣,而且千百年来长盛不衰,主要原因就在于它在航空事业的发展和科技人才的培养方面起着十分重要的作用。(1)航空模型是探索飞行奥秘的工具。人类自古以来就幻想着飞行。昆虫、鸟禽、风吹起树叶和上升的炊烟,都曾引起过人类飞行的遐想。西汉刘安在《淮南子》中记载着后羿的妻子嫦娥偷食了长生药而飞上月宫的美妙故事。这反映了古人对飞行的追求和向往。 在载人的航空器出现之前,人类就创造了许多能飞行的航空模型,不断地探索着飞行的奥秘。距今2000多年前的春秋战国时期,我们的祖先就制作出能飞的木鸟模型。《韩非子》中记载着:“墨子为木鸢,三年而成,飞一日而败。”宋朝李鸢等人编的《太平御览》中也有“张衡尝作木鸟,假以羽翮,腹中施机,能飞数里”的记载。另外,还制作出种类繁多的孔明灯、风筝和竹蜻蜒等。 唐代以后,我国的风筝传到国外,在世界上流传开来。西方有人用风筝做飞行试验,探索制造飞机的可能。美国的莱特兄弟是世界上第一架飞机的制造者,他们的飞机在1903年12月17日试飞成功。他们就是先用大风筝进行种种试验,然后制造出滑翔机,解决了升降、平衡、转弯等问题,最后才把飞机制造成功的。 飞机发明之前,航空模型具有强烈的探索性质,在飞机发明之后,航空模型仍然是研究航空科学的必要工具。每一种新飞机的试制,都要先在风洞里用模型进行试验,甚至连航天飞机这样先进的航空器,也要经过模型试验阶段,取得必要的数据,才能获得成功。 (2)航空模型是很有实用价值的器具。我国汉代就有用风筝测量距离和传递信息的。随着航空模型的发展,特别是无线电遥控模型飞机的日臻完善,航空模型的用途越来越广泛。 例如,可以利用无线电遥控模型飞机作为部队和民兵对空射击训练的靶机。在训练的时候,通过无线电遥控设备控制航模靶机完成直线飞行、转弯、上升、俯冲等飞行动作,甚至在靶机上完成空投降落伞、发射模型火箭、投放炸弹、施放拖靶等特技动作。在实弹射击时候,可以在航模靶机尾部几十米远处拖拽一个彩色靶袋,以靶袋作为目标,避免击毁靶机。 又如,在无线电遥控模型飞机上装上摄影机,就可以对地面进行航空摄影,拍摄一些人们不容易接近的野生动植物,甚至可以拍摄一些危险性很大的惊险镜头或战斗场面等。 另外,可以利用航模飞机携带农药灭虫,利用航模飞机拖一根尼龙线从一个山头到另一个山头,然后换成钢索,进行高山架线。还可以利用航模飞机飞入云层,施放催化剂,进行人工降雨,等等。(3)航空模型是普及航空知识的玩具。 航空模型活动在普及航空知识、培养航空科技人才方面所起的作用是很大的,许多著名的航空学家,小时候都非常喜爱航空模型。美国的莱特兄弟小时候就爱玩飞螺旋(竹蜻蜓),从而产生对航空事业的浓厚兴趣。美国登月飞船阿波罗11号船长阿姆斯特朗,小时候也酷爱航空模型,他在家里的地下室安装了一个风洞,用来试验自己制作的模型飞机,这无疑对他成为世界上第一个踏上月球的人有着巨大的影响。我国也有许多著名的飞机设计师、火箭设计师、飞行员等,小时候就是航模爱好者。 另外,航空模型还是一种非常吸引人的娱乐玩具。春光明媚,千姿百态的风筝随风飘荡;夏日朗朗,五颜六色的飞盘划出一道道弧线,秋高气爽,各式各样的模型飞机在蓝天中翱翔;冬天恬静,彩色缤纷的热气球冉冉升起。所有这些把人们的生活装点得更加丰富多彩。 在飞机发明之后,航空模型作为普及航空知识的工具和娱乐玩具的作用更加突出。为了推动航空事业的发展,1905年10月,在法国成立了国际航空联合会。它下设国际航空模型委员会,负责制定航空模型竞赛规则,组织国际航空模型竞赛活动。中国是国际航空联合会成员,积极参加国际航空模型竞赛活动,并取得了优异的成绩。在国内,经常举行全国性和地方性的航空模型竞赛,以推动航空模型活动和普及航空科学知识。航模知识简介 航空模型运动是以操纵、放飞自制或装配的模型航空器进行户外活动、训练比赛或创纪录飞行的一项科技性较强的运动。 现代航空模型运动分为自由飞行、线操纵、无线电遥控、仿真和电动等五大类。按动力方式又分为:活塞发动机、喷气发动机、橡筋动力模型飞机和无动力的模型滑翔机等。航空模型的最大升力面积500平方分米;最大重量25千克;活塞发动机最大工作容积250毫升。 航空模型的竞赛科目有:留空时间、飞行速度、飞行距离、特技、“空战”等。目前世界锦标赛设有30个项目,隔年举行一次。航空模型还设有专门记录各项绝对成绩 的纪录项目。目前国际航联共设90项航空模型世界纪航空模型运动的生命力在于它的趣味性和知识性。亲手制作的矫健雄鹰翱翔蓝天,往往会使青少年产生美好的遐想,激励它们不停的追求,使他们从兴趣爱好走进献身祖国航空事业的理想。参加这项活动还可以学到许多科技知识,培养既善于动脑又善于动手和克服困难勇于进取的优秀品质,促进德智体全面发展。随着人民物质文化水平的不断提高,航空模型运动也将作为一项陶冶情操的高雅休闲活动而吸引更多的成年人的参与。 飞行,是人类最大的梦想,从古至今人们一直渴望像鸟一般的在空中自由飞翔,也因此推动了不少人努力去研究及模仿鸟类的飞行动态,在尝试失败的过程中,人类终于领悟到其中的奥妙,但真正让飞行不再是遥不可及的是飞行之父“莱特兄弟”。 提到航空模型,大家第一个概念可能是,需要花昂贵金钱购买一台飞行玩具,其实航空模型并不是一般人的想像中那么奢侈的,只要你回想一下童年时所玩过的「竹蜻蜓」、或是以一张白纸所折成的「纸飞机」,这些也都是航空模型。 别以为简单的航空模型并没有什么特别,其实里面的学问可大了,不但讲求用料的选择,在投掷飞机时所使用的力量及角度都是需要学习的,假如了解并掌握到其中的技巧之后,便能真正享受飞行模型所带来的乐趣。 说了这么多有关模型飞机的事情,想必大家都很渴望马上了解一下这项的细节,现在就带各位进入这个自由飞翔的模型世界吧! 飞机的螺旋桨 螺旋桨是一种把发动机的动力变成拉力的装置。螺旋桨的效率的高低会直接影响到模型飞机的飞行成绩 螺旋桨桨叶的工作原理和机翼十分相似。如果把桨叶取下来观察,就会发现它是一个扭曲着的机翼。桨叶剖面和机翼剖面差不多。桨叶和机翼的区别在于,机翼在空气中的运动基本上是平动的,而桨叶既绕着桨轴旋转,又随着飞机千起前进。螺旋桨的拉力就是靠桨叶在空气中运动而产生的。由于桨叶既有旋转运动,又有向前运动,所以吹过桨叶的气流包括两部分:一部分是来自侧面垂直于桨轴的气流,另一部分是来自前面平行于桨轴的气流。 飞机模型视图 把一架处于水平状态的模型飞机,放在相互垂直的三个平面中间,并使机身的纵轴同其中一个平面垂直,同另外两个平面平行。如果我们分别从三个方向在足够远的地方看模型飞机,并把看到的形状画在每个平面上,也就是在三个互相垂直的平面上作出模型飞机的投影,然后把这三个相互垂直的平面展开,就可以得到图右所示的三个图-顶视图,侧视图和前视图。在一般情况下,通过这三个视图就能比较准确地表示出一架模型飞机的形状和主要尺寸。 在实际绘制模型飞机图纸的时候,为了节省图纸,这三个图的位置不一定照图1右所示放置,而是比较紧凑地排放在一起。但不论怎样放置,我们一定要培养自己能够按三视图的原理,想象出一架完整的立体模型飞机来。 飞机模型翼型 常用的模型飞机翼型有对称、双凸、平凸、凹凸,s形等几种,对称翼型的中弧线和翼弦重合,上弧线和下弧线对称。这种翼型阻力系数比较小,但升阻比也小。一般用在线操纵或遥控特技模型飞机上双凸翼型的上弧线和下弧线都向外凸,但上弧线的弯度比下弧线大。这种翼型比对称翼型的升阻比大。一般用在线操纵竞速或遥控特技模 型飞机上 平凸翼型的下弧线是一条直线。这种翼型最大升阻比要比双凸翼型大。一般用在速摩不太高的初级线操纵或遥控模型飞机上 凹凸翼型的下弧线向内凹入。这种翼型能产生较大的升力,升阻比也比较大。广泛用在竞赛留空时间的模型飞机上 S形翼型的中弧线象横放的S形。这种翼型的力矩特性是稳定的,可以用在没有水平尾翼的模型飞机上 飞机机的翼阻力 只要物体同空气有相对运动,必然有空气阻力作用在物体上。作用在模型飞机上的阻力主要有摩擦阻力、压差阻力和诱导阻力。 摩擦阻力:当空气流过机翼表面的时候,由于空气的粘性作用,在空气和机翼表面之间会产生摩擦阻力。如果机翼表面的边界层是层流边界层,空气粘性所引起的摩擦阻力比较小,如果机翼表面的边界层是紊流边界层,空气粘性所引起的摩擦阻力就比较大。 为了减少摩擦阻力,可以减少模型飞机同空气的接触面积,也可以把模型飞机表面做光滑些。但不是越光滑越好,因为表面太光滑,容易保持层流边界层,而层流边界层的气流容易分离,会使压差阻力大大增加。 机翼升力原理 如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。然后用嘴向这两张纸中间吹气,如图1所示。你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出的气体速度越大,两张纸就越靠近。从这个现象可以看出,当两纸中间有空气流过时,压强变小了,纸外压强比纸内大,内外的压强差就把两纸往中间压去。中间空气流动的速度越快,纸内外的压强差也就越大。 飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。当气流迎面流过机翼时,流线分布情况如图2。原来是一股气流,由于机翼地插入,被分成上下两股。通过机翼后,在后缘又重合成一股。由于机翼上表面拱起,是上方的那股气流的通道变窄。根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。

航模固定翼飞机机翼与机身比例多少为合适?

这不是一个固定值,不同参数变化的时候,这个比例会有变化。我给你一个通用的方案,只要按照这个方案来执行,就是科学的。

第一步,整体设计。

1、确定翼型。我们要根据模型飞机的不同用途去选择不同的翼型。翼型很多,好几千种。但归纳起来,飞机的翼型大致分为三种。一是平凸翼型,这种翼型的特点是升力大,尤其是低速飞行时。不过,阻力中庸,且不太适合倒飞。这种翼型主要应用在练习机和像真机上。二是双凸翼型。其中双凸对称翼型的特点是在有一定迎角下产生升力,零度迎角时不产生升力。飞机在正飞和到飞时的机头俯仰变化不大。这种翼型主要应用在特技机上。三是凹凸翼型。这种翼型升力较大,尤其是在慢速时升力表现较其它翼型优异,但阻力也较大。这种翼型主要应用在滑翔机上和特种飞机上。另外,机翼的厚度也是有讲究的。同一个翼型,厚度大的低速升力大,不过阻力也较大。厚度小的低速升力小,不过阻力也较小。因为我做的是练习机,那就选用经典的平凸翼型克拉克Y了。因伟哥有一定飞行基础,速度可以快一些,所以我选的厚度是12%的翼型。

实际上就选用翼型而言,它是一个比较复杂、技术含量较高的问题。其基本确定思路是:根据飞行高度、翼弦、飞行速度等参数来确定该飞机所需的雷诺数,再根据相应的雷诺数和您的机型找出合适的翼型。还有,很多真飞机的翼型并不能直接用于模型飞机,等等。这个问题在这就不详述了。

机翼常见的形状又分为:矩形翼、后掠翼、三角翼和纺锤翼(椭圆翼)。

矩形翼结构简单,制作容易,但是重量较大,适合于低速飞行。后掠翼从翼根到翼梢有渐变,结构复杂,制作也有一定难度。后掠的另一个作用是能在机翼安装角为0度时,产生上反1-2度的上反效果。三角翼制作复杂,翼尖的攻角不好做准确,翼根受力大,根部要做特别加强。这种机翼主要用在高速飞机上。纺锤翼的受力比较均匀,制作难度也不小,这种机翼主要用在像真机上。因为我做的是练习机,就选择制作简单的矩形翼。

翼梢的处理。由于机翼下面的压力大于机翼上面的压力,在翼梢处,从下到上就形成了涡流,这种涡流在翼梢处产生诱导阻力,使升力和发动机功率都会受到损失。为了减少翼梢涡流的影响,人们采取改变翼梢形状的办法来解决它。一般方法有三种,如图。

因为我做的是练习机,翼载荷小,损失些升力和发动机功率不影响大局,所以,我的翼梢没有作处理。

2、确定机翼的面积。模型飞机能不能飞起来,好不好飞,起飞降落速度快不快,翼载荷非常重要。一般讲,滑翔机的翼载荷在35克/平方分米以下,普通固定翼飞机的翼载荷为35-100克/平方分米,像真机的翼载荷在100克/平方分米,甚至更多。我选择60克/平方分米的翼载荷。40级的练习机一般全重为2.5公斤左右。又因为考虑到方便携带和便于制作,翼展定为1500毫米。那么,整个机翼的面积应该为405000平方毫米。通过计算,得出弦长为270毫米。还有,普通固定翼飞机的展弦比应在5-6之间。通过验算得知,这个弦长在规定的范围之内。

3、确定副翼的面积。机翼的尺寸确定后,就该算出副翼的面积了。副翼面积应占机翼面积的20%左右,其长度应为机翼的30-80%之间。因为是练习机,不需要太灵敏,我选15%。因为我用一个舵机带动左右两个副翼,所以副翼的长度要达到翼展的90%左右。通过计算,该机的副翼面积因为60750平方毫米,那么,一边副翼的面积就是30375平方毫米。

4、确定机翼安装角。以飞机拉力轴线为基准, 机翼的翼弦线与拉力轴线的夹角就是机翼安装角。机翼安装角应在正0 -3度之间。机翼设计安装角的目的,是为了为使飞机在低速下有较高的升力。设计时要不要安装角,主要看飞机的翼型和翼载荷。有的翼型有安装角才能产生升力,如双凸对称翼。但是,大部分不用安装角就能产生升力。翼载荷较大的飞机,为了保证飞机在起飞着陆和慢速度飞行时有较大的升力,需要设计安装角。任何事物都是一分为二的,设计有安装角的飞机,飞行阻力大,会消耗一部分发动机功率。安装角超过6度以上的,更要小心,在慢速爬升和转弯的的情况下,很容易进入失速。像我的这种平凸翼型,可产生较大的升力,翼载荷又小,不用设计安装角。如果非要设计安装角的话,会造成飞机起飞后自动爬高。

5、确定机翼上反角。机翼的上反角,是为了保证飞机横向的稳定性。有上反角的飞机,当机翼副翼不起作用时还能用方向舵转弯。上反角越大,飞机的横向稳定性就越好,反之就越差。如图。

但是,上反角也有它的两面性。飞机横向太稳定了,反而不利于快速横滚,这恰恰又是特技机所不需要的。所以,一般特技机采取0度上反角。因我做的是练习机,以横向稳定性为希望,所以我选择了3度上反角。

6、确定重心位置。重心的确定非常重要,重心太靠前,飞机就头沉,起飞降落抬头困难。同时,飞行中因需大量的升降舵来配平,也消耗了大量动力。重心太靠后的话,俯仰太灵敏,不易操作,甚至造成俯仰过度。一般飞机的重心在机翼前缘后的25~30%平均气动弦长处。特技机27~40%。在允许范围内,重心适当靠前,飞机比较稳定。

7、确定机身长度。机身和翼展的比例一般是70--80%。我选80%。那么机身的长度就确定为1200毫米。确定机头的长度。机头的长度(指机翼前缘到螺旋浆后平面的之间的距离),等于或小于翼展的15%。我选定15%,即为225毫米。

8、确定垂直尾翼的面积。垂直尾翼是用来保证飞机的纵向稳定性的。垂直尾翼面积越大,纵向稳定性越好。当然,垂直尾翼面积的大小,还要以飞机的速度而定。速度大的飞机,垂直尾翼面积越大,反之就小。垂直尾翼面积占机翼的10%。因为我的是练习机,飞行速度不高,垂尾的面积可以小一些,我选9%。通过计算,垂直尾翼面积应为36450平方毫米。在保证垂直尾翼面积的基础上,垂直尾翼的形状,根据自己的喜好可自行设计。

9、确定方向舵的面积。方向舵面积约为垂直尾翼面积的25%。通过计算得出方向舵的面积约为9113平方毫米。如果是特技机,方向舵面积可增大。

10、确定水平尾翼的翼型和面积。水平尾翼对整架飞机来说,也是一个很重要的问题。我们有必要先搞清常规布局飞机的气动配平原理。如图。

形象地讲,飞机在空中的气动平衡就像一个人挑水。肩膀是飞机升力的总焦点,重心就是前面的水桶,水平尾翼就是后面的水桶。升力的总焦点不随飞机迎角的变化而变化,永远固定在一个点上。首先,重心是在升力总焦点的前部,所以它起的作用是起低头力矩。由此可知,水平尾翼和机翼的功能恰恰相反,它是用来产生负升力的,所以它起的作用是抬头力矩,以达到飞机配平的目的。由此可知,水平尾翼只能采用双凸对称翼型和平板翼型,不能采用有升力平凸翼型。水平尾翼的面积应为机翼面积的20-25%。我选定22%,计算后得出水平尾翼的面积为89100平方毫米。同时要注意,水平尾翼的宽度约等于0.7个机翼的弦长。

11、确定升降舵面积。升降舵的面积约为水平尾翼积的20-25%。因为是练习机升降不需要太灵敏,我选定20%。通过计算得出升降舵面积约为17820平方毫米。如果是特技机,升降舵面积可增大。

12、确定水平尾翼的安装位置。从机翼前缘到水平尾翼前缘之间的距离(就是尾力臂的长度),大致等于翼弦长的3倍。此距离短时,操纵时反应灵敏,但是俯仰不精确。此距离长时,操纵反应稍慢,但俯仰较精确。F3A的机身长度大于翼展就是这个理论的实际应用,它的目的主要是为了精确。因为我的是练习机,可以短一些,我选2.85倍。那么,水平尾翼前缘应安装在距机翼前缘的785毫米处。

垂直尾翼、水平尾翼和尾力臂这三个要素合起来,就是“尾容量”。尾容量的大小,是说它对飞机的稳定和姿态变化贡献的大小。这个问题我们用真飞机来说明一下。像米格15和F16高速飞行的飞机,为了保证在高速飞行时的纵向稳定,其垂直尾翼设计得又大又高。像SU27和F18甚至设计成双垂直尾翼。而像运输机和客机,垂直尾翼就小得多。

13、确定起落架。一般飞机的起落架分前三点和后三点两种。前三点起落架,起飞降落时方向容易控制。但着陆粗暴时很容易损坏起落架,转弯速度较快时容易向一边侧翻,导致机翼和螺旋桨受损。后三点虽然在起飞降落时的方向控不如前三点好。但是其它方面较前三点都好。尤其是它能承受粗暴着陆,大大增加了初学者的信心。所以,我选用后三点。前起落架的安装位置一定要在飞机的重心前8公分左右,以免滑跑时折跟头。

14、确定发动机。一般讲,滑翔机的功重比为0.5左右。普通飞机的功重比为0.8-1左右。特技机功重比大于1以上。我的练习机就不用计算了,根据经验选用三叶40、46发动机。安装发动机时,要有向下和向右安装角,以解决螺旋桨的滑流对飞机模型左偏航和高速飞行时因升力增大引起飞机模型抬头的影响。其方法是以拉力轴线为基准,从后往前看,发动机应有右拉2度,下拉1.5度的安装角。当然,根据飞机的不同,这个角度还要根据飞行中的实际情况作进一步的调整。

就功重比而言,我们的航模飞机与真飞机有着很大的不同。我们航模的功重比都能轻松的达到1,而真飞机的功重比大都在0.3至0.6之间,唯有高性能战斗机才能接近或超过1。这也就是说,我们在飞航模中很多飞行都是在临界失速和不严重的失速的情况下飞行的,如低速度下的急转弯、急上升、吊机等。只是由于发动机的拉力大,把失速这一情况掩盖罢了。所以我们在飞航模时,很少能飞出真飞机那种感觉。这也是我们很多朋友在飞像真机时,很容易出现失速坠机的主要原因。

第二步,绘制三面图

根据上面的设计和计算结果,我们就可以绘制出自己需要的飞机了。绘制三面图的主要目的是为了得到您想要的飞机效果,并确定每个部件的形状和位置。使您在以后的工作中,有一个基本的蓝图。我绘制的飞机不是很好看,侧重了简单、实用、制作容易的指导思想。绘三面图时,我试着边学边用了SolidWorks,它和 AUTO CAD是同一个类型的软件,但这个绘图软件更加简单易用。

第三步,绘制结构图

绘制结构图的主要目的是为了确定每个部件的布局和制作步骤。如:哪个部件用什么材料,先做哪个部件后作哪个部件,部件与部件的结合方法等等。如果您胸有成竹,这一步可以省略。

第四步,放样和组装。

根据您绘制的图纸,应做一比一的放样图。目的是在组装飞机各部件时,在放样图上粘接各部件。这样能做到直观准确,提高工作质量。网上有很多介绍制作方面的精品文章,大家可以参考,我就不再赘述了。

我重点向朋友们讲讲在制作过程中,机翼和水平尾翼安装角的控制。安装角的正确与否,关系到飞机在空中的姿态能否有效地操控。如果因安装角误差大到连各舵面都无法调整时,后果就非常严重了,甚至要摔机的。机翼和水平尾翼的安装角都是以飞机的拉力轴线为基准的,这架飞机的拉力轴线比较好找,从图可知,A、F、 G、H隔框的上边在一条直线上,这条线就是拉力轴线的平行线,把它平移到发动机的曲轴线的位置,就是这架飞机的拉力轴线。机身骨架做完后,一定把它画在机身上。尔后,在安装机翼和水平尾翼时,把它们的中心线和拉力轴线平行即可。

以上就是航模有几种翼型和航模有几种翼型图片的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

  • 威灵仙栽植方法(威灵仙栽植方法图片)

    如果您正在寻找威灵仙栽植方法那么本文刚好为大家整理了各方的说法,同时还有威灵仙栽植方法图片可以一起阅读,希望能够帮到您。本文目录一览:1、威灵仙有几种品种5、威

    2023-11-08阅读:2
  • 几种花的嫁接方法(嫁接花苗的方法和技术)

    有很多朋友对几种花的嫁接方法很感兴趣,本篇文章综合一些观点给大家谈谈,同时也有嫁接花苗的方法和技术知识点可以一起了解,希望对各位有所帮助本文目录一览:1、花卉嫁

    2023-11-07阅读:4
  • 花椒有几种繁殖方法(花椒的繁殖方式)

    有很多朋友对花椒有几种繁殖方法很感兴趣,本篇文章综合一些观点给大家谈谈,同时也有花椒的繁殖方式知识点可以一起了解,希望对各位有所帮助本文目录一览:1、花椒树是怎

    2023-10-29阅读:3
  • 分株的正确方法(分株的步骤)

    如果您正在寻找分株的正确方法那么本文刚好为大家整理了各方的说法,同时还有分株的步骤可以一起阅读,希望能够帮到您。本文目录一览:1、植物分株的几种方法植物分栽是怎

    2023-10-29阅读:1
  • 月红花花语(月月红花有几种)

    今天给各位分享月红花花语的知识,其中也会对月月红花有几种进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览:1、月季的寓意和象征

    2023-10-27阅读:2
  • 红玉兰几种方法(红玉兰好吗)

    今天给各位分享红玉兰几种方法的知识,其中也会对红玉兰好吗进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览:1、红玉兰树是怎么培

    2023-10-10阅读:2
声明

删帖请联系zhiyihome@qq.com;